• Mineral content (left) and vascular canals (right) in mouse bone

FRACTURE AND FATIGUE OF SKELETAL TISSUES
(F ² Lab)


Our goals are directed toward investigating the mechanisms of deformation, fracture, and the biological responses in biological materials at multiple length-scales (from molecular to macroscales). Our work aims at bridging the gap between mechanics of materials, biology, and experimental high-energy x-ray physics to understand skeletal biology and disease as well as design principles behind biomaterials.


Affiliated with the Departments of Mechanical Engineering and Biomedical Engineering at the University of Utah, the Fracture and Fatigue of Skeletal Tissues Laboratory is directed by Dr. Claire Acevedo.


The Fracture and Fatigue of Skeletal Tissues Lab’s research is currently funded by the National Science Foundation, National Institutes of Health, the Advanced Light Source, the University of Utah Center on Aging, and the National Institute for Occupational Safety & Health.

 
 

Spotlight


WELCOME IHSAN to the F² Lab! Ihsan will be working as a Master student on microscale and nanoscale material properties of structures in bone. Find out more about him at this link! (READ MORE)

NIH R21 Grant Awarded to Dr. Acevedo! The National Institutes of Health Exploratory/Developmental R21 grant was awarded to Dr. Acevedo to research the mechanisms of increased fracture risk in diabetic bone at the collagen molecular level. (READ MORE)

CONFERENCE PRESENTATIONS were given by Mike and Yoshi at the SBMS (Swiss Bone Mineral Society) and SB³C (Summer Biomechanics, Bioengineering, and Biotransport Conference) respectively! Be on the lookout for a paper coming soon…

NSF CAREER GRANT AWARDED to Dr. Acevedo! The National Science Foundation Faculty Early Career Development Program (CAREER) award is a prestigious 5-year award offering 5 years of funding for early-career faculty. Congrats! (READ MORE)

NEW PAPER ACCEPTED in Journal of Mechanical Behavior of Biomedical Materials (Congratulations Yoshi!!) – Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research (LINK)

NEW PAPER in Materialia- Ultrasound freeze-casting of a biomimetic layered microstructure in epoxy-ceramic composite materials to increase strength and hardness (LINK)