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Abstract: Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading

to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs

content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and

diabetes. Loss of bone quality is mostly attributed to changes in material properties, structural organization, or cellular

remodeling. Though all these factors play a role in bone fragility disease, some common recurring patterns can be

found between diabetic and age-related bone fragility. The main pattern we will discuss in this viewpoint is the

increase of fibrillar collagen stiffness and loss of collagen-induced plasticity with AGE accumulation. This study

focused on recent related experimental studies and discusses the correlation between fluorescent AGEs content at the

molecular and fibrillar scales, collagen deformation mechanisms at the nanoscale, and resistance to bone fracture at

the macroscale.

Introduction

Age and type 2 diabetes mellitus (T2DM) are both associated
with a drastic increase in fracture risk, in the range of 20% to
900%, independent of bone mass (Hui et al., 1988; Marshall et
al., 1996; Bonds et al., 2006; Janghorbani et al., 2007;
Vestergaard, 2007; Karim and Bouxsein, 2016; Liang and
Chikritzhs, 2016). T2DM disproportionately affects the elderly
population (those over 65 years) compared to other adults
worldwide, and can lead to increased fragility of bones in older
individuals (on U.S. Department of Health and Human
Services, 2012; Kirkman et al., 2012; Bradley and Hsueh, 2016;
Looker et al., 2016). With the global epidemic of diabetes and
the aging of the population, understanding the mechanisms
underlying diabetic and age-related bone fragility is urgent.

Since the early 1970s, collagen structural degradation and
collagen cross-linking with age and diabetes have been amply
documented in different tissues such as skin, joints, arteries,
bone, or tendons (Hamlin et al., 1975; Piez, 1968; Traub
and Piez, 1971; Robins and Bailey, 1972; Cannon and

Davison, 1973; Barnes et al., 1974; Kivirikko, 1974; Tanzer,
1976; Cannon and Davison, 1977; Cerami et al., 1979;
Madia et al., 1979). These studies have presented robust
evidence that collagen (the most abundant protein in the
human body) is modified by non-enzymatic glycation
(Maillard reaction) between glucose and proteins and results
in advanced glycation end-products (AGEs) cross-links
formation. Non-enzymatic AGE cross-links within and in-
between collagen molecules are often measured as bulk and
comprised of pentosidine, carboxymethyllysine (CML),
carboxyethyllysine (CEL), crossline, and vesperlysines (A, B,
and C). Due to the long half-life of collagen, AGEs can
accumulate with age. This process is quite similar but
accelerated in T2DM, explaining why diabetes is often
presented as a “fast aging” process (Hamlin et al., 1975;
Monnier and Cerami, 1981; Monnier et al., 1984). Thirty
years later, studies on bone fragility started to emerge and
implicate the accumulation of AGEs in the pathogenesis of
diabetes and loss of bone quality due to aging (Catanese et
al., 1999; Vashishth et al., 2001; Tang et al., 2007;
Vashishth, 2007; Saito and Marumo, 2010; Tang and
Vashishth, 2011; Yamagishi, 2011; Zimmermann et al.,
2011; Garnero, 2012). This new discovery shifted the
research on bone fragility by suggesting new factors
affecting bone quality at the collagen level, and new
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potential therapeutic targets to inhibit AGEs formation (such
as blocking the receptor for AGEs [RAGE], for instance).
Indeed, loss of bone mass and mineral content could not
fully explain osteoporotic fracture with age (Schuit et al.,
2004) or address diabetic bone fragility where bone mass is
mostly unchanged. In this viewpoint, we discuss here how
AGEs accumulation affects bone resistance to fracture (i.e.,
toughness) and disrupt nanoscale mechanisms of collagen
deformation and energy dissipation.

Multiscale Origins of Bone Fragility

The ability of cortical bone to resist fracture originates from its
multiscale hierarchical organization (Fig. 1A). Building blocks
in bone are organized from the molecular and nanoscopic
levels to the macroscopic level. At the nanoscale level, basic
building blocks are formed by mineralized collagen fibrils
comprising collagen molecules, hydroxyapatite crystals, and
water. Mineralized fibrils are aligned, stacked in fibers, and
arranged in lamellae, where each lamella layer has a
different fiber orientation than its neighbor. At the
microscale, concentric lamellae form tube-like structures
called osteons, which protect central canals where blood
vessels and nerves are running (Fig. 1A). Bone quality, used
to characterize bone resistance independently of bone mass,
is related to (1) material properties, (2) structure, and (3)
remodeling. These three factors of bone quality are impaired
with age and T2DM.

Bone material properties
These properties (e.g., tissue modulus, yield stress/strain,
ultimate stress/strain, strain to failure, work-to-fracture, and

toughness) are often measured using strength and toughness
tests. Strength tests are designed to measure the maximum
load a material can withstand before breaking or deforming
permanently. Toughness tests, on the other hand, measure
the ability of a material to absorb energy before breaking
(Ritchie, 2011). Material properties are conferred at the
nanoscale by collagen fibrils (100 nm diameter) reinforced
by mineral crystals; elastic and pre-yield properties are
attributed to the stiffness of the mineral, whereas the plastic,
post-yield properties, and intrinsic toughness are attributed
to the ability of collagen to deform plastically and prevent
crack initiation and growth (Burstein et al., 1975; Nalla et
al., 2004; Currey et al., 2007; Launey et al., 2010). Most
studies have shown that aging does not significantly impair
the elastic modulus of bone (Nyman et al., 2007; Koester et
al., 2011; Zimmermann et al., 2011). However, yield
strength and ultimate strength are decreased, respectively,
by approximately 1% and 2% per decade in human cortical
bone for adults older than 30 years of age (Zimmermann et
al., 2011; Morgan et al., 2018). Even more significantly,
toughness, energy dissipation, and ultimate strain are
reduced by approximately 10%–15% every decade (Burstein
et al., 1976; Nalla et al., 2004; Nyman et al., 2007; Koester et
al., 2011; Zimmermann et al., 2011; Morgan et al., 2018).
Studies on material properties in diabetic human bones are
not as abundant as those in aging bones, but animal studies
show evidence of a significant decrease in post-yield
properties, including a reduction of 10%–15% in ultimate
strength and 30%–40% in ultimate strain and toughness
(Campbell et al., 2016; Acevedo et al., 2018a). Based on
comparative models (Nyman et al., 2007; Acevedo et al.,
2018a), the reduced post-yield properties and toughness in

FIGURE 1.Hierarchical organization in bone and mechanisms of collagen fibril deformation. (A) Hierarchical bone structure with cross-links
in the molecular and fibrillar structure of collagen. (B) Collagen fibril deformation measured by small-angle x-ray scattering during rat ulna
tensile testing. (C) Collagen loading stages from the initial state to complete failure.
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aging and diabetic bones seem to be mostly attributable to
deficits in material properties (conferred at the collagen
level) rather than structural deficits.

Bone structure
The structure of bones (microarchitecture and geometry) is
also known to influence resistance to fracture and energy
dissipation during crack growth (i.e., extrinsic toughening
mechanisms). Extrinsic toughening mechanisms act at the
microscale level to reduce the driving force that propagates
the crack. These mechanisms include crack deflection/
twisting and crack bridging (Ager et al., 2006; Peterlik et al.,
2006; Ritchie et al., 2006). When the crack propagates
transversely to the osteons, crack deflection occurs around
the hypermineralized osteonal boundaries (i.e., cement lines)
to dissipate energy (Martin and Burr, 1982; Nalla et al.,
2005). Other microstructural features, such as osteocyte
lacunae or porosity, can deflect the crack (Currey, 1962).
When the crack propagates longitudinally along the osteons
(in-between lamellae and fibers), crack bridging leaves
uncracked regions to resist fracture along the crack path.
Aged bone shows a significant increase in osteon density by
100% to 200% between 30 to 80 years of age and an
increase in vascular canal diameters (Busse et al., 2010;
Zimmermann et al., 2011; Jast and Jasiuk, 2013), which
vastly expand the area of cement lines at which microcracks
can form, resulting in both smaller crack bridges and
reduced crack deflection (Koester et al., 2011; Zimmermann
et al., 2011). Diabetes moderately affects cortical bone
geometry, such as a change in moment of inertia due to a
different distribution of bone mass (Prisby et al., 2008;
Acevedo et al., 2018a). Recent studies (Ay et al., 2020) have
found that hyperglycemia increases osteocyte lacunar
density and decreases vascular canal diameter. Changes in
microstructure are closely tied to cellular remodeling, as the
process of cellular remodeling involves the removal and
formation of bone tissue, which can alter bone microstructure.

Cellular-regulated remodeling
Bone health is maintained through dynamic remodeling
executed by resident cells in this tissue: osteoclasts resorb
old bone, followed by osteoblast deposition of bone. The
osteocyte, a third bone cell type, directs osteoclast and
osteoblast activity and dynamically remodels their local
bone matrix in a process called perilacunar remodeling
(Qing et al., 2012; Tang et al., 2012). Disruption of
remodeling causes an increased risk of fracture due to bone
fragility, even with normal bone mass. Age is known to
create an imbalance between osteoclasts and osteoblast
activity, leading to bone loss, as well as elevated osteoblasts
and osteocyte apoptosis. T2DM reduces osteoblast
differentiation and osteoblast-induced bone formation while
enhancing osteoclast activity and increased bone resorption,
which can also lead to bone loss (Lu et al., 2003; Suzuki et
al., 2005; Alikhani et al., 2007; Liu et al., 2006; Takizawa et
al., 2008). It is also thought that hyperglycemia in T2DM
might induce osteocyte apoptosis (Picke et al., 2019).
Disruption of osteocyte-mediated remodeling causes
distinctive collagen disorganization and a pattern of
hypermineralization of the mid-cortical bone matrix (Qing

et al., 2012; Tang et al., 2012). In the following discussion,
we further explore how the three factors of bone quality are
affected by the increase of AGEs with age and diabetes.

Accumulation of Advance Glycation End-products in
Collagen

To understand how AGEs accumulate in collagen, we must
first understand how collagen is structured. Collagen is
composed of three chains with a repeating sequence of gly-
X-Y, where X/Y can be any amino acid but is generally
proline or hydroxyproline. During bone development and
maturation (before the age of 20 years), enzymatic cross-
links are created to stabilize the triple-helix of collagen
molecules and connect collagen fibrils. Enzymes, such as
lysyl oxidase, prolyl hydroxylase, galactosyltransferase, and
matrix metalloproteinase, play a crucial role in regulating
the formation and degradation of enzymatic cross-links in
bone, which is vital for maintaining optimal bone strength
and remodeling. These enzymes work together to balance
the formation and breakdown of cross-links, providing
stiffness and strength to the bone matrix (Knott and Bailey,
1998). Enzymatic cross-links are first divalent (immature)
and then trivalent (mature) cross-links that link collagen
molecules head to tail. Increased enzymatic cross-link
density and maturity can beneficially increase collagen fibril
stiffness and bone stiffness and strength (Oxlund et al.,
1995; Bailey et al., 1998; Depalle et al., 2015).

After bone maturation, non-enzymatic cross-links are
created by an oxidative reaction between glucose and amino
acid residues on proteins (e.g., lysine or hydroxylysine in
type I collagen). This reaction, called the Maillard reaction
(Sroga et al., 2015), forms cross-links among AGEs along
the triple helical region of the molecule. Since AGEs are not
regulated by enzymes, they can accumulate (Valcourt et al.,
2007), especially in aging tissues with low turnover or in the
presence of high blood sugar concentrations (like in T2DM)
or oxidative stress. The content of AGEs, specifically the
content of the well-studied pentosidine, increases with age
and T2DM in cortical and trabecular bone (Tang et al.,
2007; Karim et al., 2013). Contrary to enzymatic cross-links,
the accumulation of AGEs with aging or diabetic cortical
bone is associated with increased mechanical fragility, as will
be discussed in the following section (Vashishth et al., 2001;
Wang et al., 2002; Garnero et al., 2006; Siegmund et al.,
2008; Silva et al., 2009; Saito and Marumo, 2010; Tang and
Vashishth, 2010; Ionova-Martin et al., 2011; Snedeker and
Gautieri, 2014; Acevedo et al., 2018a).

Advance Glycation End-Products Correlate with Loss of
Collagen Deformation and Loss of Bone Toughness

The best explanation for the decrease in plastic strain energy
in bone fragility is the impairment of collagen deformation
by AGEs accumulation (Nyman et al., 2007; Acevedo et al.,
2018a). The current state-of-the-art technique for
quantifying collagen deformation at the nanoscale is in situ
small-angle x-ray scattering (SAXS). The scattering pattern
of the collagen fibrils (d-spacing) can be used to measure
fibrillar strain, while digital image correlation of bone
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samples can be used to measure the tissue strain at the
macroscale. Only a few studies (Barth et al., 2011;
Zimmermann et al., 2011, 2016; Acevedo et al., 2015, 2018a)
have gathered data on bone fluorescent AGEs concentration
at the molecular and fibrillar levels, on collagen deformation
mechanisms at the nanoscale (using SAXS), and bone
fracture resistance at the macroscale. These studies
investigated the effect of age, diabetes, long-term
alendronate treatment, and irradiation, which can affect the
collagen structure and increase AGEs content.

A novel finding of these studies was to identify the
different stages of fibril deformation in cortical bone and
how aging and T2DM affect these mechanisms. The results
indicated that factors such as age, diabetes, band high AGEs
content did not influence the fibrillar straightening and
stretching (stages 1 and 2, Figs. 1B and 1C) that occurs at
lower levels of tissue strain, which typically precedes tissue
yielding. However, the process of fibrillar sliding (stage 3,
Figs. 1B and 1C), which occurs when fibrils decouple during
tissue yielding, was systematically impaired with high AGEs
content in these studies (Zimmermann et al., 2011; Acevedo
et al., 2015, 2018a). Fibrillar sliding was found to be
essential to promote plasticity at the nanoscale as the main
intrinsic toughening mechanism to resist crack initiation
and growth. SAXS results suggest that age (Zimmermann et
al., 2011; Barth et al., 2011; Zimmermann et al., 2016),
diabetes (Acevedo et al., 2018a), and exposure to x-ray
radiation (Barth et al., 2011) limit the ability of collagen
fibrils to deform plastically by fibrillar sliding due to the
accumulation of AGEs. Aging and diabetes stiffen the fibrils
and inhibit fibrillar sliding (Zimmermann et al., 2011;
Acevedo et al., 2018a, 2018b). This phenomenon, called
collagen stiffening, prevents the collagen in aged- and
T2DM-affected bone from sustaining as much tissue
deformation without brittle failure. The deficit in collagen
ductility must be compensated at higher length scales
(micro-scale) via energy dissipation through extrinsic
toughening mechanisms such as crack deflection and
microdamage accumulation. Evidence revealed that age,
diabetes, and the AGEs content correlate with greater

microdamage and microcrack accumulation (Schaffler et al.,
1995; Diab et al., 2005, 2006; Diab and Vashishth, 2007;
Mohsin et al., 2019; Liu et al., 2020).

Cumulatively, these studies show that the increase of
AGEs (compared with healthy controls (Barth et al., 2011;
Acevedo et al., 2015; Zimmermann et al., 2016; Acevedo et
al., 2018a)) or young (Zimmermann et al., 2011) is highly
correlated with fibrillar stiffening (r2 = 0.81, Fig. 2A).
Decrease in toughness is moderately correlated with fibrillar
stiffening (r2 = 0.51, Fig. 2B) and not very correlated with
AGEs content (r2 = 0.26, Fig. 2C). This brings evidence that
AGEs accumulation directly leads to reduced collagen fibril
deformation (reduced plasticity and resistance to fracture).
However, collagen deformation itself is not the only
contributor to bone toughness, although it is an important
one. Structural deficits and remodeling impairment are also
key contributors to bone fragility. AGEs are detrimental
because they can also affect cells responsible for remodeling
and microstructure, as explained in the following section.

Other Effects of Advance Glycation End-products
Accumulation on Bone Cell Function and Geometry/
Microstructure

Excessive AGE cross-link accumulation could affect the bone
cells’ ability to maintain optimal geometry and
microarchitecture via unbalanced matrix resorption/
formation and favors bone fragility. AGEs can alter
osteoclast differentiation and reduce resorption (Valcourt et
al., 2007; Ural et al., 2015), reduce the phenotypic
expression of osteoblasts (Katayama et al., 1996), impact the
osteocyte mechano-sensitivity (Hie et al., 2011; Tanaka et
al., 2015; Yang et al., 2021), trigger cell senescence (Almeida
and O’Brien, 2013; Teissier et al., 2022), and stimulate
secretion of pro-inflammatory and catabolic factors (Takagi
et al., 1997). AGEs also affect the collagen surface and cell-
matrix interactions, impairing bone repair (Snedeker and
Gautieri, 2014). Therefore, AGE accumulation with diabetes
and age may impair cortical bone geometry, microstructure,

FIGURE 2. (A) Correlation between change in ultimate fibril strain and advance glycation end-product (AGE) accumulation. (B) Correlation
between change in toughness and change in fibril strain. (C) Correlation between the decrease in toughness and AGE accumulation. The ratios
were obtained from published values for age (Zimmermann et al., 2011, 2016), diabetes (Acevedo et al., 2018a), bisphosphonate treatment
(Acevedo et al., 2015; Zimmermann et al., 2016), and irradiation (Barth et al., 2011).
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and damage repair leading to a decreased resistance to
fracture. More research is needed to investigate whether and
how AGEs can directly impact cortical bone geometry and
microstructure with age and diabetes.

Discussion and Conclusion

We showed here that the dramatic reduction in cortical bone
toughness and bone quality with age and diabetes is primarily
attributable to deficits in material properties, specifically in
collagen-related plasticity, and secondly to structural deficits
and remodeling impairment. Non-enzymatic cross-linking
plays a key role in these three aspects of bone quality
(material properties, structure, and remodeling). The studies
we combined in this viewpoint consistently show a direct
relationship between the accumulation of AGEs and the
reduction of fibrillar deformation, which is closely associated
with the loss of toughness and plasticity. AGEs are also
known to affect the cells responsible for bone formation,
resorption, and damage repair leading to structural changes.
This contribution of AGEs to toughness via remodeling is
not well quantified yet. This knowledge would give evidence
that AGEs affect bone quality via different mechanisms and
thus are key regulators of bone quality.

Studies have reported many limitations that hinder the
ability to draw further conclusions. While AGEs are
commonly measured in serum, urine, and the skin,
currently, no strong correlation between AGEs in bone and
these measurable AGEs has been noted (Kida et al., 2019;
Waqas et al., 2020). AGEs content in bones varies greatly
from one study to another (Karim and Bouxsein, 2016); the
content can be pentosidine (via HPLC) or bulk fluorescent
AGEs (combining pentosidine, CML, CEL, crossline, and
vesper lysines A, B, and C). However, it is not clear which
AGE is the most important or whether pentosidine is the
right target to study. Indeed, pentosidine has been the most
studied AGEs even though it represents less than 1% of
fluorescent AGEs in bones (Dyer et al., 1991); it is only
weakly correlated to the total amount of fluorescent AGEs
in human cortical and cancellous bone (Karim et al., 2013).
Glucosepane can be another promising (non-fluorescent)
AGEs to investigate in bones because it has been found to
be abundant in the skin of human diabetic patients
(Monnier et al., 2014). CML seems to have the potential to
be an efficient (non-fluorescent) marker of AGEs (Thomas
et al., 2018); these (non-crosslinking) AGE adducts might be
associated with the loss of enzymatic cross-links and
resistance to fracture (Thomas et al., 2018; Willett et al.,
2022). In general, more information about the process of
AGEs cross-linking (abundance, binding sites, size, and
shape) at the molecular level would help understand the
mechanical effects of AGEs on the molecular collagen
behavior and identify the most detrimental AGEs to target.
Measuring AGEs, such as pentosidine or CML, in skin,
urine, or serum may be a potential method to predict bone
fragility, but further investigation is needed to confirm the
efficacy of the technique.

Researchers have been exploring therapeutic agents that
can inhibit the formation of AGEs, block the interaction
between AGEs and the RAGE, or break down existing AGEs

to restore bone resistance to fracture in diabetic or aged
patients (Willett et al., 2022). One of the most promising
therapies lately involved pyridoxamine (vitamin B6)
(Tanimoto et al., 2007; Nagai et al., 2012; Mascolo and
Vernì, 2020). Whether or not current anti-resorptive
treatments such as bisphosphonate (used to treat elderly and
diabetic patients) have a beneficial or detrimental effect on
AGEs accumulation is still under debate. In our combined
study (Fig. 2C), we observed conflicting results; long-term
bisphosphonate in healthy dogs increased AGEs, whereas
bisphosphonate treatment in osteoporotic patients decreased
AGEs.

In conclusion, further research is necessary to fully
understand the molecular mechanisms by which AGEs
affect the molecular functions of collagen in aging and
diabetic bone fragility. This knowledge will help us identify
whether AGEs quantification and removal have a clinical
future in fracture prediction and therapies development to
restore the biomechanical properties of bones. Improving
our understanding of these mechanisms will be crucial for
developing effective strategies for improving bone health in
diabetic and aged individuals.
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